F. Corks

Freedman showed that two closed, simply connected, smooth 4-manifolds are

homotopy equivalent homeomorphic

(if not smooth the this is not quite right)

but Ponaldson + Freedman => I infinitely many district smooth manifolds that are all homeomorphic!

Big Question: how do you organize this mess of smooth manifolds?

So far no one knows how to do this, but here is a curious result that might help

Th 14:

let X, X, be closed, simply connected, smooth 4-manifolds
that are homeomorphic

Then I a smooth contractible manifold

CCX

and an involution

φ:2C→2C

such that

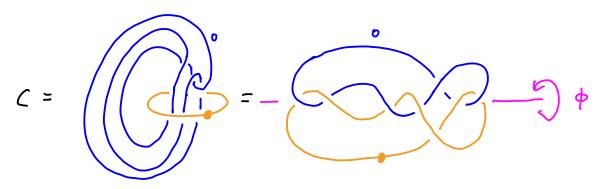
 $X_1 = (X_0 - C) U_{\phi} C$

C is called a <u>cork</u> So the says homeomorphic non-diffeomorphic,

simply connected manifolds differ by a cork twist

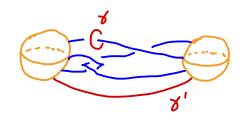
<u>Remark:</u>

- extended over C (or else X, Xz diffeo!)
- z) Abbulut found the first cork
 it was the Mazu manifold!



involution & is rotation about axis

detour if you know contact/symplectic geometry



- · the orange and blue define a Stein 4-manifold
- · \$\phi\$ takes & to &'
- · 8 bounds a disk in ((the coure of handle)
- · +6(8') = 0
- · slice-Bennequin inequality implies

 $+6(8') \leq -\chi(\text{surface in } C \text{ w} = 8')$ so 8' does <u>not</u> bound a disk in C• there for Φ does <u>not</u> extend over C

3) There has been lots of recent work

Tange: \exists C and $\phi: \exists C \rightarrow \exists C$ of order n st $C \hookrightarrow X \in S$ some ψ -mfd and (X-C) $U_{\phi k}$ C all different for $0 \le k < n$

Auckley-Kim-Melvin-Ruberman:

if G is any finite subgroup of 50/4) then $\exists C$ and a G-action on ∂C st. (X-C) $\lor_g C$ all distinct

Compf-Akbulut: "infinite order corks"

Thm 15:

let W be a 5-dimensional h-wbordism between simply connected closed 4-manifolds X₀ and X₁. Then \exists a subcobordism $A \subset W$ from $A_0 \subset X_0$ to $A_1 \subset X_1$, such that

- (1) Ao, A., A are compact contractible manifolds
- ② W-int A is a product cobordism

 1.e. $\cong [0,1] \times (X_0 int A_0)$ $\cong [0,1] \times (X_1 int A_1)$
- 3 W-A is simply connected

(5)
$$[0,1] \times A_0 \cong [0,1] \times A_1 \cong B^5$$

* (see below)

6 A, ≅ A, differ restricted to d is an involution

1 Curtis-Freedman-Hsiang-Stong '96

2 Matveyer '96

3 Bižaca unpublished

Proof of The 14:

given X_0 , X_1 as in the theorem, we know there is an h-cobordism W by $Th \stackrel{\text{\tiny th}}{=} 12$

now by 2 Xo-Ao = X,-A,

by 6 A = A, so X and X, agree

in the complement of $C:=A_0\cong A_1$

note: DA = DA, by 2 so differ in 6 restricted to

DAO can be thought of as a differ of DAO to

we will see that this is the involution taking Xo to X,

<u>Proof of 15</u>: given W we can assume it has a hondle

decomposition with no 0 or 5 handles

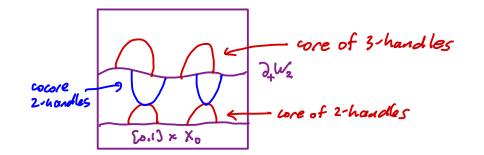
and as in the proof of the h-cobordism to m (The III. 1)

we can exchange I for 3-handles and 4 for 2-handles

50

W=([0,1] x Xo) u 2-handles u 3-handles

recall Wn = U of all handles = le [and [o.1] x x)



in 2+ Wz let

 $S_{0,i}$: 1=1,...,k be the belt spheres of 2-handles $S_{1,i}$: 1=1,...,k be the attaching spheres of 3-handles

since W is an h-cobordism we can number spheres

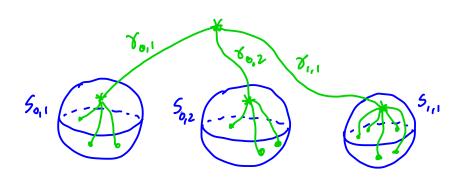
and possibly handle

slide so that $S_{0,i}$: $S_{i,i}$: $S_{i,i}$: $S_{i,j}$: $S_{$

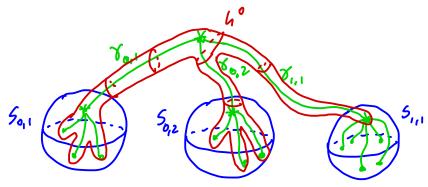
we can assume all Soj; are transverse to each other choose a base point * in d. Wz disjoint from spheres and base point *ij on Soj

let This be disjoint arcs in 2+ W2 from * to *nij (only intersecting 5, in end points)

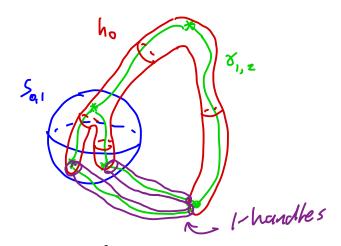
let M be with disjoint interiors arcs in So,; connecting *ij to intersection points of So,; with other Sk.l



<u>note:</u> small ubud of $(U \mathcal{S}_{1,j}, U \mathcal{N}_{\kappa}, \tilde{m} \mathcal{S}_{0,1}'^{5})$ $\cong \mathcal{B}^{4} \text{ think of as a 0-handle}$



now ubhols of 1/4 in 5,1/3 are attached to 4° as 1-handles



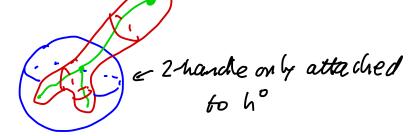
note a noble of $S_{i,j}$ out side on whandles is attached as a 2-handle so we have $h_{i,1}^2 \dots h_{k}^2 h_{k+1}^2 \dots h_{2k}^2$ from $S_{i,i}$ from $S_{i,i}$

and a ubhd N of (arcs and spheres)

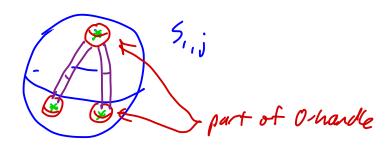
i3 O-h v 1-4's v 2-h's

note: 1) h?... hk don't go over 1-handles
and are attached to unknots

eg.



2) his for jok do go over 1-handles but in a very special way



SO The (N) = < x1, -, xe (1, --, 12h)

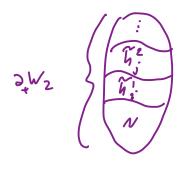
The l-for each chardle

The andle

note: 1, --, 1/k trivial since the h_2^2 12k don't go over 1-handles

(k+1, -- (2h are products of $x_2 \overline{x}_1$ or $\overline{x}_1 x_2$ So they are frivial too!

now extend handle strabove on N to all of 2, W2



50 we add 1-handles \tilde{h}_{i}^{1} ... \tilde{h}_{k}^{i} ,

2-handles \tilde{h}^{2} ... \tilde{h}_{k}^{2} ,

3-handles and one 4-handle

TI (2, W2) = {1}

but has generators $h'_1, ..., h'_{\ell}, h'_{\ell}, ..., h'_{k'}$ and relations coming from h''_i and h''_i

there are "Tietze moves" that take the presentation of Ti(2, We) to the trivial presentation

given a presentation $\langle X|R \rangle$ relations
the moves are

if r ∈ N(R)

then new presentation is $\{X \mid Ru\{r\}\}$

2) remove a relation:

if $R' = R - \{r\}$ and $r \in N(R')$ then new presentation is $\langle X|R' \rangle$

3) add a generator:

If g is a new symbol not in X and w is any word in X then new presentation is $\{X \cup \{g\}\} \mid R \cup \{wg^{-1}\}\}$

4) remove superflous generator:

if g & X and wg-1 & R for some word w in X-lg?

then the new presention is

< X- [9] | R- {wg-'}>

any 2 presentations of the same group are related by 1) - 4)

let's see how 1)-4) related to handle bodies (24D)

i) given r & N(R) ther r = product of conjugates
in R

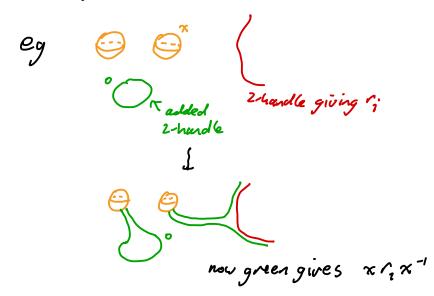
say w, r, w, -1 ... w, r, w, -1

now add 2/3 cancelling pair

push attaching sphere over 1-hadles to

see w.w. and then over 2-handle

gwing r., now working other w.r.w.

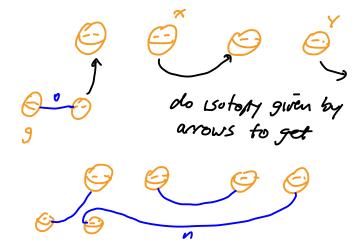


2) just ignor a 2-hundle giving an entra rel¹²

3) given we a word in X corresp to 1-hardles

add cancelling 1/2 pair call new generator for 1-handle g now push 1-handle over other 1-handles corresponding to w

for example

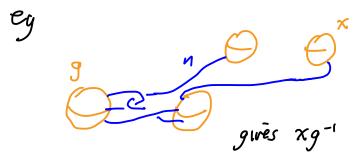


z-handle now gives Xyg-1

4) if g ∈ X and wg-1 ∈ R

then 2-handle corresp. to wg-1

algebraically cance(s (but not necessarily gemetrically)

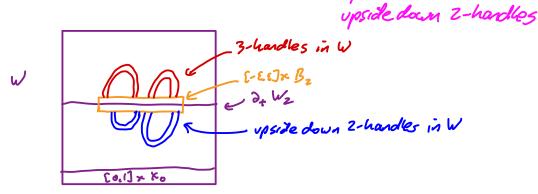


so leave the hardles but can remove g and xg-1 from presentation

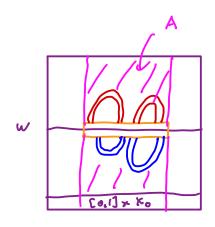
thus we can do handle slides, add 1/2 and 2/3 cancelling pairs as dictated by the Tietze moves so that the handles \tilde{h}_{i}^{2} , \tilde{h}_{i}^{2} concel the generators h_{i}^{1} and \tilde{h}_{i}^{1} and the handles \tilde{h}_{i+1}^{2} . \tilde{h}_{i}^{1} , give trivial relⁿs

let B_i = all the 0 and 1-handles of $\partial_+ W_2 \cup (\tilde{h}_i^2 - \tilde{h}_n^2)$ by construction $\pi_i(B_i) = 1$ and $\tilde{H}_i(B_i) = 0$ so B_i is contractible

let $B_2 = B_1 \cup h_1^2 \cup ... \cup h_{2k}^2$ (so $N \cup some h_1^2$'s) $B_3 = (\Sigma - \xi. \xi) \times B_2) \cup 3 - handles attached to Soi; and Si, i$



let A = B3 U (all of W above and below B3)



@ of 14 th

note: 1) M-A has no handles so is a product

2) B, × [9,1] is diffeomorphic to A since the added 2 and 3-handles cancel so A is contractible now B, x [8:1] is a 5-manifold with the "same" handle structure as B,

in B, the attaching 5's of the 2-handles are homotopic to generators of T, in $\partial(1-\text{handle body})$

50 in B, x [0,1] the are attached to a 4-manifold and so are iso topic to generators

:- the 1 and 2-handles cancel

and we see B, × [o.1] = A is B"

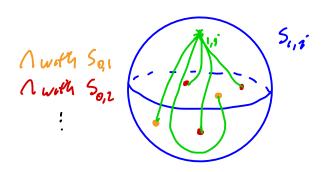
to see $A_0 \times [0,1] \cong B^4 = 5$ in the we need a handle decomposition of A_0

to get from B2 to A0 we attach 3-handles to Soi's that means A0 is obtained from B2 by surgering the Soi's from 2-handles to 1-handles

the new 1-handles give new generators to TI(A)

but the 2-handles $h_{k+1}^2 - h_{zh}^2$ give relations that kill the $\gamma_1 - \gamma_n$

now when choosing arcs in Si, we first connect #i, i to all intersections with So, i then So, 2, and so on



we can now see the rel from the 2-handle coming from $S_{i,i}$ is

W, Wz ... Wk

where w; is a word in y; and \(\frac{7}{3} \)

with exponent sum = $\begin{cases} 1 & \text{for } 1=j \\ 0 & \text{for } 2\neq j \end{cases}$

now as we saw for the Mazur manifold in $A_0 \times [0,1]$ where $h_{k+1}^2 \cdots h_{2h}^2$ are attached to circles in a 4-manifold (where for 5's, homotopy => isotopy) the h_1^2 's cancel the 1-handles

and Aox [o, 1] = B, x [o, 1] = B5

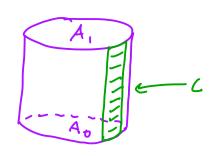
can argue similarly for A, × [0,1]

note: 3 also => A, and A, contractifle

that and 4 => 1 of The

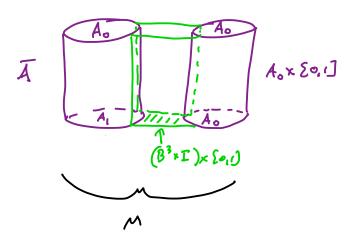
now for 6

note: $A \cong B^5$ so $S^4 = \partial A = A_0 \cup_3 A_1$ thus $A_0 \cup_3 A_1 - C \cong B^4$ $C = [0,1] \times B^3 \subset \partial A$ with $B^3 \subset \partial A_0$



and similarly we know $A_0 \times [0.1] \stackrel{\sim}{=} B^5$ so $(A_0 \cup_3 A_0) - C \cong B^4$

consider $M = \overline{A} \cup (A_0 \times [0,1])$ glued along $B^3 \times [0,1]$

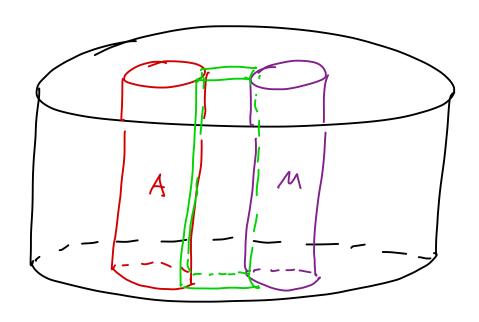


we know $\overline{A} \cong B^5$ and $A_0 \times E_0$, $\underline{I} \cong B^5$ so $M \cong B^5$ and $\partial_- M = (A_0 \cup A_0) - C \cong B^4$ $\partial_+ M = (A_0 \cup A_0) - C \cong B^4$

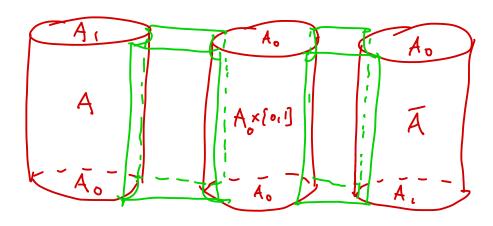
40 M is a cobordism = (\So, 17 x B4, Bo, B4)

A, UB3 A. AOUB3 AO

We can now insert this is the product part of W so we see



rename A to all of this
all previous properties hold but now
we see



now there is an obvious involution taking top to bottom and X, differs from Xo by this involution

we only have 3 left. This is a liftle involved and not used much (?), so we refer to

Kirly "Akbulut's corks and 4-cobordisms of smooth, simply connected 4-mfds"